
Master of Science in Mechanical Engineering

# Green Design and Sustainable Manufacturing

CM4



# Contacts





### Prof.ssa Bianca Maria Colosimo

biancamaria.colosimo@polimi.it

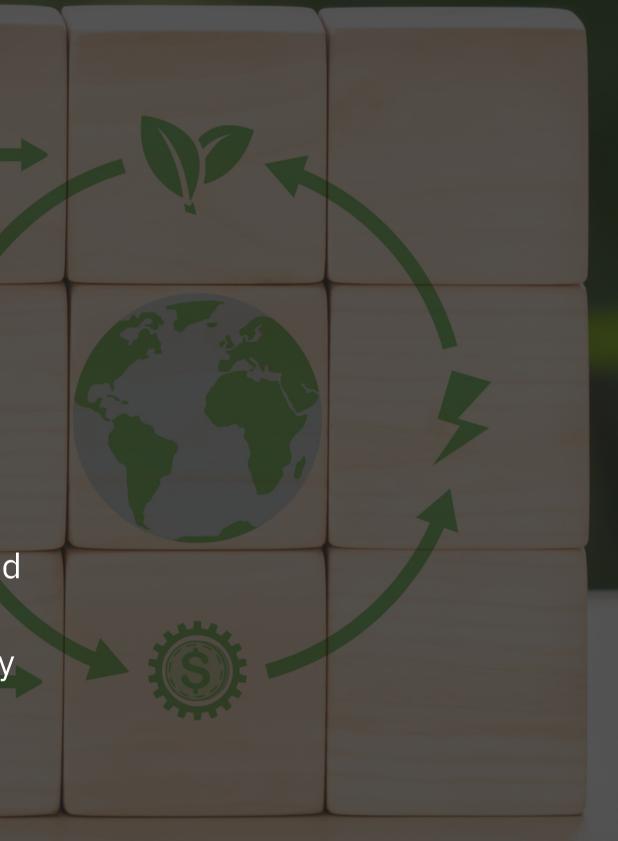
### Prof. Mario Guagliano

mario.guagliano@polimi.it

### **Prof. Michele Monno**

michele.monno@polimi.it

### **Track description**


The 2030 Agenda for Sustainable Development and the European Green Deal define a (social, energetic and environmental) path for the future perspective of the planet and its inhabitants.

A fundamental factor in achieving these ambitious targets is the paradigm shift in product design and industrial production, i.e. to foster the transition to a new generation of green products and circular and sustainable manufacturing. The aim of the Green Design and Sustainable Manufacturing track is the education and training of a new generation of professionals specialized in sustainable development. A wide variety of complementary courses and dedicated laboratories are also offered in the three specialistic paths (Green Design, Sustainable Smart Manufacturing, Additive Manufacturing) of the second year.

## Skills

### Students will learn how to:

- design innovative green products while minimizing their lifecycle impact thanks to an in-depth knowledge of new solutions for sustainable manufacturing (e.g., digital machining, additive manufacturing) and de-/remanufacturing, (e.g., disassembly, recycling processes and systems reducing the environmental footprint)
- evaluate the overall impact of products from the very early design stage
- innovate manufacturing processes for zero-defect production and minimized energy consumption



## CM4: Core Courses

#### **Course Title**

Dynamics of Mechanical Systems

Advanced Manufacturing Processes A

Advanced Materials for Mechanical Engineering

Measurements for Mechanical Engineering

Machine Design

Design and Management of Production Systems

| YEAR | SEM | ECTS | ECTS GROUP |
|------|-----|------|------------|
| 1    | 1   | 5    | 5          |
| 1    | 1   | 10   | 10         |
| 1    | 1   | 5    | 5          |
| 1    | 2   | 5    | 5          |
| 1    | 2   | 5    | 5          |
| 1    | 2   | 10   | 10         |

# CM4: Track Specific Courses

#### **Course Title**

Methods and Tools for Circular Mechanical Design

Manufacturing and De-manufacturing Systems Engineering

**Digital Machining A** 

Lightweight Design of Mechanical Structures

Additive Manufacturing A

Materials Engineering, Recycling and Environmental Impact A

#### **Elective courses**

(Energy Conversion Technologies, Design of Robotic Systems, Advanced Design of Machine Elements, Lightweight Design of Mecha Structures - Fundamentals, Reliable And Resilient Design of Mechanical Systems, Topology Optimisation, Product Digital Twin, Ado Manufacturing for Space and Aerospace Applications, Digital Factory, Repairing and Re-manufacturing Processes, Circular Industri Sustainable Manufacturing, Polymer Technologies For Circular Economy, ...)

#### Lab course

(Additive Manufacturing for the Green Transition, Product Design for Life Cycle Analysis Assessment, Digital Machining, Re-Manufa Robotic Manufacturing)

|                                    | YEAR | SEM | ECTS | ECTS GROUP |
|------------------------------------|------|-----|------|------------|
|                                    | 1    | 2   | 10   | 10         |
|                                    | 1    | 1   | 10   | 10         |
|                                    | 2    | 1   | 10   |            |
|                                    | 2    | 1   | 10   | 10         |
|                                    | 2    | 1   | 10   |            |
|                                    | 2    | 2   | 10   |            |
| anical<br>Iditive<br>rial Systems, | 2    | 1-2 | 5    | 20         |
| acturing,                          | 2    | 2   | 5    | 5          |

# **CM4: Additive Manufacturing Profile**

#### **Course Title**

| Additive | Manufacturing B |  |
|----------|-----------------|--|
|----------|-----------------|--|

Additive Manufacturing for Space and Aerospace Applications

**Energy Conversion Technologies** 

Geometry Assurance

Materials Engineering, Recycling and Environmental Impact B

Metamaterials and Metastructures

Methods for Complex Shapes Generation

Quality Data Analysis B

Repairing and Re-manufacturing Processes

Sustainable Manufacturing

**Topology Optimisation** 

LAB - Additive Manufacturing for the Green Transition

LAB - Robotic Manufacturing

| YEAR | SEM | ECTS |
|------|-----|------|
| 2    | 1   | 5    |
| 2    | 2   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 2   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 2   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 2   | 5    |
| 2    | 2   | 5    |

# **CM4: Green Design Profile**

#### **Course Title**

| Additive | Manufacturing B |
|----------|-----------------|
|----------|-----------------|

Advanced Design of Machine Elements

**Biomimetic Structure Design** 

Design of Robotic Systems

**Digital Machining B** 

Energy Conversion Technologies

Failure Analysis, Sicurezza Industriale e Ingegneria Forense

Lightweight Design of Mechanical Structures - Fundamentals

Non-Distructive Testing and Evaluation for Materials and Components

Reliable And Resilent Design of Mechanical Systems

Repairing and Re-manufacturing Processes

LAB - Product Design for Life Cycle Analysis Assessment

LAB - Re-Manufacturing



| YEAR | SEM | ECTS |
|------|-----|------|
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 2   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 2   | 5    |
| 2    | 2   | 5    |

## **CM4: Sustainable Smart Manufacturing Profile**

#### **Course Title**

Circular Industrial Systems

Design of Robotic Systems

**Digital Factory** 

**Digital Machining B** 

Energy Conversion Technologies

Lightweight Design of Mechanical Structures - Fundamentals

Polymer Technologies For Circular Economy

Product Digital Twin

Sustainable Materials for Innovative Processes

Vision Based 3D Measurements


LAB - Digital Machining

LAB - Re-Manufacturing

| YEAR | SEM | ECTS |
|------|-----|------|
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 2   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 1   | 5    |
| 2    | 2   | 5    |
| 2    | 2   | 5    |

## CM4: Master's Thesis

Recupero semiautomatizz ato delle lamiere da carrozzeria tramite Abrasive Waterjet Kinetic powder deposition for repair, remanufacturing and upcycling



Sustainable post-processing for functional and durable surfaces

## **CM4: Master's Thesis**

Redesign for Circular Economy: Methodology and Application to Lithium-ion Battery Packs for Electric Vehicles Netshape Additive manufacturing



## AM for the twin transition: new processes and LCA